login
A356524
Expansion of e.g.f. Product_{k>0} 1/(1 - k * x^k)^(1/k!).
1
1, 1, 4, 15, 100, 565, 5946, 46039, 605256, 6646329, 103614490, 1320840631, 27185208876, 401901829069, 9042437722878, 168984439301175, 4257225193170256, 85582303577644465, 2593970612953642386, 57441717948059605927, 1862688382990615542900
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A354849(k) * binomial(n-1,k-1) * a(n-k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-k*x^k)^(1/k!))))
(PARI) a354849(n) = (n-1)!*sumdiv(n, d, d^(n/d)/(d-1)!);
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a354849(j)*binomial(i-1, j-1)*v[i-j+1])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 10 2022
STATUS
approved