login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356495
Expansion of e.g.f. Product_{k>0} B((k * x)^k) where B(x) = exp(exp(x)-1) = e.g.f. of Bell numbers.
1
1, 1, 10, 191, 7287, 424292, 37434683, 4512452023, 726390985036, 149098938941283, 38187088904721655, 11903871288193251930, 4442392007373264794677, 1953788894138983864638457, 1000334575509506861927067378, 589712001176601700420819946615
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A354892(k) * binomial(n-1,k-1) * a(n-k).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, exp(exp((k*x)^k)-1))))
(PARI) a354892(n) = n!*sumdiv(n, d, d^n/(n/d)!);
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a354892(j)*binomial(i-1, j-1)*v[i-j+1])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 09 2022
STATUS
approved