login
A356242
a(n) is the number of Fermat numbers dividing n, counted with multiplicity.
2
0, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 0, 2, 0, 1, 2, 0, 1, 1, 0, 0, 1, 2, 0, 3, 0, 0, 2, 0, 0, 1, 1, 1, 2, 0, 0, 1, 1, 0, 1, 0, 0, 3, 0, 0, 1, 0, 2, 2, 0, 0, 3, 1, 0, 1, 0, 0, 2, 0, 0, 2, 0, 1, 1, 0, 1, 1, 1, 0, 2, 0, 0, 3, 0, 0, 1, 0, 1, 4, 0, 0, 1, 2, 0, 1
OFFSET
1,9
COMMENTS
The multiplicity of a divisor d (not necessarily a prime) of n is defined in A169594 (see also the first formula).
A000244(n) is the least number k such that a(k) = n.
The asymptotic density of occurrences of 0 is 1/2.
The asymptotic density of occurrences of 1 is (1/2) * Sum_{k>=0} 1/(2^(2^k)+1) = (1/2) * A051158 = 0.2980315860... .
LINKS
Eric Weisstein's World of Mathematics, Fermat Number.
Wikipedia, Fermat number.
FORMULA
a(n) = Sum_{k>=1} v(A000215(k), n), where v(m, n) is the exponent of the largest power of m that divides n.
a(A000215(n)) = 1.
a(A000244(n)) = a(A000351(n)) = a(A001026(n)) = n.
a(A003593(n)) = A112754(n).
a(n) >= A356241(n).
a(A051179(n)) = n.
a(A080307(n)) > 0 and a(A080308(n)) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=0} 1/(2^(2^k)) = 0.8164215090... (A007404).
MATHEMATICA
f = Table[(2^(2^n) + 1), {n, 0, 5}]; a[n_] := Total[IntegerExponent[n, f]]; Array[a, 100]
CROSSREFS
Cf. A080307 (positions of nonzeros), A080308 (positions of 0's).
Sequence in context: A115604 A128617 A116488 * A216601 A283000 A145765
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jul 30 2022
STATUS
approved