login
A356013
Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) = n!/(k! * floor(n/k)).
2
1, 1, 1, 2, 3, 1, 6, 6, 4, 1, 24, 30, 20, 5, 1, 120, 120, 60, 30, 6, 1, 720, 840, 420, 210, 42, 7, 1, 5040, 5040, 3360, 840, 336, 56, 8, 1, 40320, 45360, 20160, 7560, 3024, 504, 72, 9, 1, 362880, 362880, 201600, 75600, 15120, 5040, 720, 90, 10, 1
OFFSET
1,4
FORMULA
E.g.f. of column k: -(1 - x^k) * log(1 - x^k)/(k! * (1 - x)).
EXAMPLE
Triangle begins:
1;
1, 1;
2, 3, 1;
6, 6, 4, 1;
24, 30, 20, 5, 1;
120, 120, 60, 30, 6, 1;
720, 840, 420, 210, 42, 7, 1;
5040, 5040, 3360, 840, 336, 56, 8, 1;
40320, 45360, 20160, 7560, 3024, 504, 72, 9, 1;
...
PROG
(PARI) T(n, k) = n!/(k!*(n\k));
CROSSREFS
Row sums gives A356011.
Column k=1..3 give A000142(n-1), |A265376(n)|, A356012.
Cf. A355996.
Sequence in context: A035485 A074306 A294218 * A366139 A347945 A036039
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jul 23 2022
STATUS
approved