login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355867
Coefficients in the even function A(x) = Sum_{n>=0} a(n)*x^(2*n) such that: 2 = Sum_{n=-oo..+oo} x^n * (x^n + i*sqrt(A(x)))^n, where i^2 = -1.
2
1, 1, -1, -6, -3, 27, 64, -72, -580, -573, 3276, 10778, -4429, -94493, -153086, 463061, 2197569, 604351, -17222574, -40338277, 64029441, 477897865, 433963667, -3248816635, -10525409672, 6577294016, 106318417880, 163863253517, -599970596239, -2714863450622
OFFSET
0,4
COMMENTS
What is the pattern to the signs of the terms?
Related identity: Sum_{n=-oo..+oo} (-x)^n * (x^n + y)^n = 0 for all y.
Related identity: Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + y*x^n)^n = 0 for all y.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^(2*n) satisfies the following sums.
(1) 2 = Sum_{n=-oo..+oo} x^n * (x^n + i*sqrt(A(x)))^n.
(2) 0 = Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + i*sqrt(A(x)))^n.
(3) 1 = Sum_{n=-oo..+oo} x^(2*n) * (x^(2*n) + i*sqrt(A(x)))^(2*n).
(4) 1 = Sum_{n=-oo..+oo} x^(2*n+1) * (x^(2*n+1) + i*sqrt(A(x)))^(2*n+1).
(5) 2 = Sum_{n=-oo..+oo} x^(n*(n-1)) / (1 + i*sqrt(A(x))*x^n)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + i*sqrt(A(x))*x^n)^n.
(7) 1 = Sum_{n=-oo..+oo} x^(2*n*(2*n-1)) / (1 + i*sqrt(A(x))*x^(2*n))^(2*n).
(8) 1 = Sum_{n=-oo..+oo} x^(2*n*(2*n+1)) / (1 + i*sqrt(A(x))*x^(2*n+1))^(2*n+1).
EXAMPLE
G.f.: A(x) = 1 + x^2 - x^4 - 6*x^6 - 3*x^8 + 27*x^10 + 64*x^12 - 72*x^14 - 580*x^16 - 573*x^18 + 3276*x^20 + 10778*x^22 - 4429*x^24 + ...
Let B = sqrt(A(x)) and i = sqrt(-1), then the imaginary part vanishes in the following sums:
(1) 2 = ... + x^(-3)/(x^(-3) + i*B)^3 + x^(-2)/(x^(-2) + i*B)^2 + x^(-1)/(x^(-1) + i*B) + 1 + x*(x + i*B) + x^2*(x^2 + i*B)^2 + x^3*(x^3 + i*B)^3 + ... + x^n*(x^n + i*sqrt(A(x)))^n + ...
(2) 0 = ... - x^(-3)/(x^(-3) + i*B)^3 + x^(-2)/(x^(-2) + i*B)^2 - x^(-1)/(x^(-1) + i*B) + 1 - x*(x + i*B) + x^2*(x^2 + i*B)^2 - x^3*(x^3 + i*B)^3 + ... + (-x)^n*(x^n + i*sqrt(A(x)))^n + ...
(3) 1 = ... + x^(-6)/(x^(-6) + i*B)^6 + x^(-4)/(x^(-4) + i*B)^4 + x^(-2)/(x^(-2) + i*B)^2 + 1 + x^2*(x^2 + i*B)^2 + x^4*(x^4 + i*B)^4 + x^6*(x^6 + i*B)^6 + ... + x^(2*n)*(x^(2*n) + i*sqrt(A(x)))^(2*n) + ...
(4) 1 = ... + x^(-5)/(x^(-5) + i*B)^5 + x^(-3)/(x^(-3) + i*B)^3 + x^(-1)/(x^(-1) + i*B) + x*(x + i*B) + x^3*(x^3 + i*B)^3 + x^5*(x^5 + i*B)^5 + ... + x^(2*n+1)*(x^(2*n+1) + i*sqrt(A(x)))^(2*n+1) + ...
where
B = sqrt(A(x)) = 1 + 2*(x/2)^2 - 10*(x/2)^4 - 172*(x/2)^6 - 90*(x/2)^8 + 12284*(x/2)^10 + 90812*(x/2)^12 - 664088*(x/2)^14 - 14660346*(x/2)^16 - 35699220*(x/2)^18 + 1460864084*(x/2)^20 + ...
The expansion of Sum_{n=-oo..+oo} x^n * (x^n + i*sqrt(A(x)))^n yields
2 = 2 + (2*i^2 + 2)*x^2 + (2*i^4 + 2*i^2)*x^4 + (2*i^6 + 4*i^4 + 4*i^2 + 2)*x^6 + (2*i^8 + 6*i^6 - 2*i^4 - 6*i^2)*x^8 + (2*i^10 + 8*i^8 - 18*i^4 - 12*i^2)*x^10 + (2*i^12 + 10*i^10 + 4*i^8 - 46*i^6 - 14*i^4 + 30*i^2 + 2)*x^12 + (2*i^14 + 12*i^12 + 10*i^10 - 64*i^8 - 76*i^6 + 110*i^4 + 122*i^2)*x^14 + (2*i^16 + 14*i^14 + 18*i^12 - 80*i^10 - 178*i^8 + 210*i^6 + 308*i^4 + 6*i^2)*x^16 + ...
in which all coefficients of x^n evaluate to zero except the constant term.
Specific values.
Let a = A(1/2) = 1.11275889505675972780876...
and b = sqrt(a) = 1.05487387637421362384214...,
then 2 = Sum_{n=-oo..+oo} 1/2^n * (1/2^n + i*b)^n.
The signs of the terms begin:
[+,+,-,-,-,+,+,-,-,-,+,+,-,-,-,+,+,+,-,-,+,+,+,-,-,+,+,+,-,-,-, +,+,-,-,-,+,+,-,-,-,+,+,-,-,-,+,+,+,-,-,+,+,+,-,-,+,+,+,-,-,-, +,+,-,-,-,+,+,-,-,-,+,+,+,-,-,+,+,+,-,-,+,+,+,-,-,-,+,+,-,-,-, +,+,-,-,-,+,+,+,-,-,+,+,+,-,-,+,+,+,-,-,+,+,+,-,-,-,+,+,-,-,-, +,+,-,-,-,+,+,+,-,-,+,+,+,-,-,+,+,+,-,-,-,+,+,-,-,-,+,+,-,-,-, +,+,+,-,-,+,+,+,-,-,+,+,+,-,-,+,+,+,-,-,-,+,+,-,-,-,+,+,-,-,-, +,+,+,-,-,+,+,+,-,-,+,+,+,-,-, ...].
PROG
(PARI) {a(n) = my(A=[1, 0], B); for(i=1, n, A=concat(A, [0, 0]); B = sqrt(Ser(A));
A[#A-1] = polcoeff( sum(m=-#A, #A, x^m*(x^m + I*B)^m ), #A)/2); A[2*n+1]}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1, 0], B); for(i=1, n, A=concat(A, [0, 0]); B = sqrt(Ser(A));
A[#A-1] = polcoeff( sum(m=-#A, #A, x^(2*m*(2*m-1)) / (1 + I*B*x^(2*m))^(2*m) ), #A)); A[2*n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A355868.
Sequence in context: A088697 A039631 A370373 * A287510 A282418 A287608
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 09 2022
STATUS
approved