login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355829
Dirichlet inverse of A009194, the greatest common divisor of sigma(n) and n, where sigma is the sum of divisors function.
2
1, -1, -1, 0, -1, -4, -1, 0, 0, 0, -1, 7, -1, 0, -1, 0, -1, 8, -1, 1, 1, 0, -1, -10, 0, 0, 0, -25, -1, 10, -1, 0, -1, 0, 1, 15, -1, 0, 1, -8, -1, 6, -1, -1, 2, 0, -1, 16, 0, 2, -1, 1, -1, -6, 1, 46, 1, 0, -1, -9, -1, 0, 0, 0, 1, 10, -1, 1, -1, 2, -1, -29, -1, 0, 4, -1, 1, 6, -1, 16, 0, 0, -1, 29, 1, 0, -1, 2, -1, -8
OFFSET
1,6
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A009194(n/d) * a(d).
MATHEMATICA
s[n_] := GCD[n, DivisorSigma[1, n]]; a[1] = 1; a[n_] := - DivisorSum[n, a[#] * s[n/#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Jul 20 2022 *)
PROG
(PARI)
A009194(n) = gcd(n, sigma(n));
memoA355829 = Map();
A355829(n) = if(1==n, 1, my(v); if(mapisdefined(memoA355829, n, &v), v, v = -sumdiv(n, d, if(d<n, A009194(n/d)*A355829(d), 0)); mapput(memoA355829, n, v); (v)));
CROSSREFS
Cf. also A355828.
Sequence in context: A127560 A098172 A049759 * A265421 A137252 A228623
KEYWORD
sign
AUTHOR
Antti Karttunen, Jul 20 2022
STATUS
approved