login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355825
a(n) = 1 if all exponents in prime factorization of n have an odd binary weight, otherwise 0.
5
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1
OFFSET
1
FORMULA
Multiplicative with a(p^e) = A010060(e).
For all n >= 1, a(n) >= A355823(n) >= A302777(n).
a(n) = A295316(A268385(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + f(1/p)) = 0.87686263163054480657..., where f(x) = 1 - x + (1 - (1-x) * Product_{k>=0} (1-x^(2^k)))/2. - Amiram Eldar, Oct 27 2023
MATHEMATICA
a[n_] := If[AllTrue[FactorInteger[n][[;; , 2]], OddQ[DigitCount[#, 2, 1]] &], 1, 0]; Array[a, 100] (* Amiram Eldar, Jul 19 2022 *)
PROG
(PARI) A355825(n) = factorback(apply(e->(hammingweight(e)%2), factor(n)[, 2]));
CROSSREFS
Characteristic function of A270428 (exponentially odious numbers).
Cf. A000069, A010060, A268385, A295316, A302777, A355826 (Dirichlet inverse).
Differs from related A355823 for the first time at n=128, where a(128) = 1, while A355823(128) = 0.
Cf. also A270419.
Sequence in context: A330548 A225817 A355823 * A332732 A248863 A328306
KEYWORD
nonn,easy,mult
AUTHOR
Antti Karttunen, Jul 19 2022
STATUS
approved