login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355701
a(n) = Product of prime(k+1) where k runs through the exponents of the positions 2^k of the 1-bits in A354169(n).
1
1, 2, 3, 5, 7, 6, 11, 13, 17, 35, 19, 23, 29, 22, 31, 39, 37, 41, 43, 85, 47, 133, 53, 59, 61, 667, 67, 71, 73, 62, 79, 33, 83, 481, 89, 97, 101, 1763, 103, 107, 109, 235, 113, 119, 127, 1007, 131, 137, 139, 3599, 149, 151, 157, 1541, 163, 2059, 167, 173, 179
OFFSET
0,2
COMMENTS
Compactification of A354169. Offset matches A354169.
LINKS
MATHEMATICA
nn = 58; r = c[_] = 0; m = 1; Array[Set[{a[#], c[#]}, {#, #}] &, 2, 0]; Do[k = SelectFirst[Union@ Map[Total, Rest@ Subsets[2^Reverse[Length[#] - Position[#, 1][[All, 1]]] &@ IntegerDigits[2^(r + 2) - m - 1, 2]]], c[#] == 0 &]; Set[{a[n], c[k]}, {k, n}]; m += a[n]; If[And[IntegerQ[#], # > 0], m -= a[#]] &[n/2]; If[And[EvenQ[k], PrimePowerQ[k], k > 2^r], r++], {n, 2, nn}]; Table[Times @@ Map[Prime, 1 + Length[#] - Position[#, 1][[All, 1]]] &@ IntegerDigits[a[n], 2], {n, 0, nn}] (* Michael De Vlieger, Jul 14 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Jul 14 2022
STATUS
approved