login
A355592
Positions of records in A357299: integers m such that the number of divisors whose first digit equals the first digit of m sets a new record.
3
1, 10, 100, 108, 120, 180, 1008, 1260, 1680, 10010, 10080, 15120, 100320, 100800, 110880, 166320, 196560, 1003200, 1004640, 1005480, 1028160, 1053360, 1081080, 1441440, 1884960, 10024560, 10090080, 10533600, 10810800, 12252240, 17297280, 100069200, 100124640, 100212840, 100245600
OFFSET
1,2
COMMENTS
Observation: all terms start with the digit 1.
The corresponding records are: 1, 2, 3, 4, 5, 6, 10, 11, 12, ...
For even terms k we have A000005(k) >= 2*A357299(k). For 3 <= n <= 101, A000005(k) >= 3*A357299(k). - David A. Corneth, Sep 26 2022
LINKS
EXAMPLE
1008 is a term because A357299(1008) = 10, the ten corresponding divisors are {1, 12, 14, 16, 18, 112, 126, 144, 168, 1008} and 10 is larger than any earlier value in A357299.
MATHEMATICA
f[n_] := IntegerDigits[n][[1]]; s[n_] := Module[{fn = f[n]}, DivisorSum[n, 1 &, f[#] == fn &]]; seq = {}; sm = 0; Do[If[(sn = s[n]) > sm, sm = sn; AppendTo[seq, n]], {n, 1, 200000}]; seq (* Amiram Eldar, Sep 24 2022 *)
PROG
(PARI) f(n) = my(fd=digits(n)[1]); sumdiv(n, d, digits(d)[1] == fd); \\ A357299
lista(nn) = my(r=0, x, list=List()); for (n=1, nn, if ((x=f(n)) > r, listput(list, n); r = x); ); Vec(list); \\ Michel Marcus, Sep 24 2022
(PARI) upto(n) = { r = -1; res = List(); forfactored(i = 1, n, if(numdiv(i[2]) >= r, d = divisors(i[2]); t = i[1]\10^logint(i[1], 10); c = sum(j = 1, #d, d[j]\10^logint(d[j], 10) == t); if(c > r, r = c; listput(res, i[1]); ) ) ); res } \\ David A. Corneth, Sep 24 2022
(Python)
from sympy import divisors
from itertools import count, islice
def b(n): f = str(n)[0]; return sum(1 for d in divisors(n) if str(d)[0]==f)
def agen(): # generator of terms
record = -1
for m in count(1):
v = b(m)
if v > record: yield m; record = v
print(list(islice(agen(), 17))) # Michael S. Branicky, Sep 24 2022
CROSSREFS
Cf. A342833 (with last digit).
Sequence in context: A257795 A257950 A052009 * A357300 A248040 A034088
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Sep 24 2022
EXTENSIONS
More terms from Michel Marcus, Sep 24 2022
STATUS
approved