OFFSET
0,2
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} (3^(k-1) + 2^(k-1)) * binomial(n-1,k-1) * a(n-k).
a(n) ~ exp(exp(3*r)/3 + exp(2*r)/2 - 5/6 - n) * (n/r)^(n + 1/2) / sqrt((1 + 3*r)*exp(3*r) + (1 + 2*r)*exp(2*r)), where r = LambertW(3*n)/3 - 1/(2 + 3/LambertW(3*n) + 3^(4/3) * n^(1/3) * (1 + LambertW(3*n)) / LambertW(3*n)^(4/3)). - Vaclav Kotesovec, Jul 05 2022
MATHEMATICA
nmax = 20; CoefficientList[Series[Exp[Exp[3*x]/3 + Exp[2*x]/2 - 5/6], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 30 2022 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(exp(3*x)/3+exp(2*x)/2-5/6)))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (3^(j-1)+2^(j-1))*binomial(i-1, j-1)*v[i-j+1])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 30 2022
STATUS
approved