Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Dec 04 2023 12:32:50
%S 1,5,27,157,979,6517,46107,345261,2726243,22623525,196712171,
%T 1787356765,16929897395,166808851541,1706299041211,18088031239437,
%U 198392625389315,2248104026019461,26283054263021963,316637825898555069,3926250785070282579,50056384077880370101
%N Expansion of e.g.f. exp(2*(exp(x) - 1) + 3*x).
%C Binomial transform of A355247.
%H Vaclav Kotesovec, <a href="/A355252/b355252.txt">Table of n, a(n) for n = 0..550</a>
%F a(n) ~ n^(n+3) * exp(n/LambertW(n/2) - n - 2) / (8 * sqrt(1 + LambertW(n/2)) * LambertW(n/2)^(n+3)).
%F a(0) = 1; a(n) = 3 * a(n-1) + 2 * Sum_{k=1..n} binomial(n-1,k-1) * a(n-k). - _Ilya Gutkovskiy_, Dec 04 2023
%t nmax = 25; CoefficientList[Series[Exp[2*Exp[x]-2+3*x], {x, 0, nmax}], x] * Range[0, nmax]!
%o (PARI) my(x='x+O('x^30)); Vec(serlaplace(exp(2*(exp(x) - 1) + 3*x))) \\ _Michel Marcus_, Dec 04 2023
%Y Cf. A001861, A035009, A355247, A355253.
%K nonn
%O 0,2
%A _Vaclav Kotesovec_, Jun 26 2022