login
A355007
Triangle read by rows. T(n, k) = n^k * |Stirling1(n, k)|.
1
1, 0, 1, 0, 2, 4, 0, 6, 27, 27, 0, 24, 176, 384, 256, 0, 120, 1250, 4375, 6250, 3125, 0, 720, 9864, 48600, 110160, 116640, 46656, 0, 5040, 86436, 557032, 1764735, 2941225, 2470629, 823543, 0, 40320, 836352, 6723584, 27725824, 64225280, 84410368, 58720256, 16777216
OFFSET
0,5
FORMULA
Sum_{k=0..n} (-1)^k * T(n,k) = A133942(n). - Alois P. Heinz, Mar 30 2023
Conjecture: T(n,k) = A056856(n,k)*n. - R. J. Mathar, Mar 31 2023
EXAMPLE
Table T(n, k) begins:
[0] 1;
[1] 0, 1;
[2] 0, 2, 4;
[3] 0, 6, 27, 27;
[4] 0, 24, 176, 384, 256;
[5] 0, 120, 1250, 4375, 6250, 3125;
[6] 0, 720, 9864, 48600, 110160, 116640, 46656;
[7] 0, 5040, 86436, 557032, 1764735, 2941225, 2470629, 823543;
MAPLE
seq(seq(n^k*abs(Stirling1(n, k)), k = 0..n), n = 0..9);
MATHEMATICA
T[n_, k_] := If[n == k == 0, 1, n^k * Abs[StirlingS1[n, k]]]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 17 2022 *)
CROSSREFS
A000142 (column 1), A000407 (row sums), A000312 (main diagonal), A355006.
Cf. A133942.
Sequence in context: A344031 A229534 A021810 * A073800 A076813 A049289
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jun 17 2022
STATUS
approved