login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354612
Expansion of e.g.f. exp(f(x) - 1) where f(x) = (1 + x)^x = e.g.f. for A007113.
1
1, 0, 2, -3, 32, -150, 1404, -11340, 120448, -1319976, 16600320, -223664760, 3300331704, -52223268240, 887583503520, -16071609481200, 309263446333440, -6296705309543040, 135262191966465600, -3056359409652695040, 72462969268541596800
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A007113(k) * binomial(n-1,k-1) * a(n-k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((1+x)^x-1)))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j!*sum(k=0, j\2, stirling(j-k, k, 1)/(j-k)!)*binomial(i-1, j-1)*v[i-j+1])); v;
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jul 08 2022
STATUS
approved