OFFSET
0,12
COMMENTS
For n >= 10, a(n) is the maximal product of ten positive integers with sum n.
LINKS
Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 0, 0, 0, 0, 0, 0, 9, -18, 9, 0, 0, 0, 0, 0, 0, 0, -36, 72, -36, 0, 0, 0, 0, 0, 0, 0, 84, -168, 84, 0, 0, 0, 0, 0, 0, 0, -126, 252, -126, 0, 0, 0, 0, 0, 0, 0, 126, -252, 126, 0, 0, 0, 0, 0, 0, 0, -84, 168, -84, 0, 0, 0, 0, 0, 0, 0, 36, -72, 36, 0, 0, 0, 0, 0, 0, 0, -9, 18, -9, 0, 0, 0, 0, 0, 0, 0, 1, -2, 1).
FORMULA
a(n) = 2*a(n-1) - a(n-2) + 9*a(n-10) - 18*a(n-11) + 9*a(n-12) - 36*a(n-20) + 72*a(n-21) - 36*a(n-22) + 84*a(n-30) - 168*a(n-31) + 84*a(n-32) - 126*a(n-40) + 252*a(n-41) - 126*a(n-42) + 126*a(n-50) - 252*a(n-51) + 126*a(n-52) - 84*a(n-60) + 168*a(n-61) - 84*a(n-62) + 36*a(n-70) - 72*a(n-71) + 36*a(n-72) - 9*a(n-80) + 18*a(n-81) - 9*a(n-82) + a(n-90) - 2*a(n-91) + a(n-92).
Sum_{n>=10} 1/a(n) = 1 + zeta(10). - Amiram Eldar, Jan 10 2023
a(10*n) = n^10 (A008454). - Bernard Schott, Feb 02 2023
MATHEMATICA
Table[Product[Floor[(n + k)/10], {k, 0, 9}], {n, 0, 50}]
PROG
(PARI) a(n) = prod(k=0, 9, (n+k)\10); \\ Michel Marcus, Jul 09 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 08 2022
STATUS
approved