login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354317
Expansion of e.g.f. exp(-log(1 + x)^2 / 2).
2
1, 0, -1, 3, -8, 20, -34, -126, 2514, -28008, 285774, -2922810, 30858048, -339954264, 3920819748, -47319853140, 596005041852, -7799132781792, 105344546511684, -1454910026870412, 20242465245436128, -276289562032117200, 3490199850169557480
OFFSET
0,4
FORMULA
E.g.f.: 1/(1 + x)^(log(1 + x)/2).
a(0) = 1; a(n) = -Sum_{k=1..n} binomial(n-1,k-1) * Stirling1(k,2) * a(n-k).
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * Stirling1(n,2*k)/((-2)^k * k!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-log(1+x)^2/2)))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x)^(log(1+x)/2)))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, binomial(i-1, j-1)*stirling(j, 2, 1)*v[i-j+1])); v;
(PARI) a(n) = sum(k=0, n\2, (2*k)!*stirling(n, 2*k, 1)/((-2)^k*k!));
CROSSREFS
Sequence in context: A027299 A321067 A224421 * A143785 A182735 A135565
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 24 2022
STATUS
approved