OFFSET
1,2
COMMENTS
The abundancy index of a number k is sigma(k)/k = A017665(k)/A017666(k), where sigma is the sum-of-divisors function (A000203).
Davenport (1933) proved that sigma(k)/k possesses a continuous distribution function. Therefore, it has an asymptotic median.
The asymptotic mean of the abundancy indices is Pi^2/6 = 1.64493... (A013661).
Mitsuo Kobayashi (unpublished, 2018) found that the median is in the interval (1.523812, 1.5238175) (see the MathOverflow link).
REFERENCES
Harold Davenport, Über numeri abundantes, Sitzungsberichte der Preußischen Akademie der Wissenschaften, phys.-math. Klasse, No. 6 (1933), pp. 830-837.
LINKS
Sébastien Palcoux, On the density map of the abundancy index, MathOverflow, 2020.
EXAMPLE
1.52381...
CROSSREFS
KEYWORD
AUTHOR
Amiram Eldar, Apr 30 2022
STATUS
approved