login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353263
Primes whose square is the sum of the cubes of four primes, not necessarily distinct.
1
1193, 1949, 5639, 7907, 8501, 10301, 20101, 20939, 29137, 30091, 34403, 65173, 68567, 70249, 70537, 76801, 84163, 105943, 109147, 116483, 153247, 161753, 169943, 171733, 175829, 180563, 208589, 214483, 222197, 224969, 242483, 261427, 280507, 313933, 317327, 319883
OFFSET
1,1
COMMENTS
The sum must contain 2^3, else it will be even, hence not prime. - Michael S. Branicky, Apr 10 2022
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..724
Zhichun Zhai, Problems related to Waring-Goldbach problem involving cubes of primes, arXiv:2201.07346 [math.GM], 2022. See Table 2 p. 3. Warning 85012 is a typo for 8501.
EXAMPLE
1193 is a term because 2^3 + 29^3 + 47^3 + 109^3 = 1423249 = 1193^2.
PROG
(PARI) list(lim)=my(v=List(), P=apply(p->p^3, primes(sqrtnint(lim\=1, 3)))); foreach(P, p, foreach(P, q, foreach(P, r, my(s=p+q+r, t); for(i=1, #P, t=s+P[i]; if(t>lim, break); if (issquare(t, &rr) && isprime(rr), listput(v, rr)))))); v = Set(v); \\ after A346917
CROSSREFS
Square roots of the intersection of A346917 and A001248.
Cf. A353249.
Sequence in context: A103171 A032530 A344628 * A287049 A153379 A103172
KEYWORD
nonn
AUTHOR
Michel Marcus, Apr 09 2022
EXTENSIONS
a(11) and beyond from Michael S. Branicky, Apr 09 2022
STATUS
approved