login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353250
a(0) = 1, a(n) = harmonic_mean(a(n-1), n), where harmonic_mean(p, q) = 2/(1/p + 1/q); numerators.
1
1, 1, 4, 24, 48, 480, 960, 13440, 26880, 161280, 322560, 7096320, 14192640, 369008640, 738017280, 295206912, 590413824, 20074070016, 40148140032, 1525629321216, 15256293212160, 30512586424320, 61025172848640, 2807157951037440, 5614315902074880
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Harmonic Mean.
Eric Weisstein's World of Mathematics, Lerch Transcendent.
Wikipedia, Harmonic mean.
FORMULA
a(n) = numerator(1/(1/2^n - Re(Phi(2, 1, n+1)))), where Phi(z, s, a) is the Lerch transcendent.
EXAMPLE
a(0) = 1,
a(1) = 2/(1/1 + 1/1) = 1,
a(2) = 2/(1/1 + 1/2) = 4/3,
a(3) = 2/(1/(4/3) + 1/3) = 24/13,
a(4) = 2/(1/(24/13) + 1/4) = 48/19, etc.
This sequence gives the numerators: 1, 1, 4, 24, 48, ...
MATHEMATICA
Table[1/(1/2^n - Re[LerchPhi[2, 1, n + 1]]), {n, 0, 24}] // Numerator (* or *)
a[0] = 1; a[n_Integer] := a[n] = 2/(1/a[n-1] + 1/n); Table[a[n], {n, 0, 24}] // Numerator
CROSSREFS
Cf. A353251 (denominators).
Cf. A003149, A136128, A191778 (has many terms in common), A241519, A242376.
Sequence in context: A090821 A226575 A052645 * A191778 A157625 A128205
KEYWORD
nonn,frac
AUTHOR
STATUS
approved