login
A353140
Digitally balanced numbers (A031443) whose squares and cubes are also digitally balanced.
1
3274, 13453, 13492, 13706, 14726, 15113, 15498, 15528, 52049, 52251, 52330, 52673, 52778, 53478, 53684, 53775, 53972, 54295, 54411, 54598, 54601, 55057, 55449, 55462, 55505, 55512, 55689, 56333, 58066, 58260, 58446, 58453, 58470, 58918, 59266, 59722, 59786
OFFSET
1,1
COMMENTS
Numbers x such that x, x^2 and x^3 are terms of A031443, that is, have the same number of 0's as 1's in their binary representations.
MATHEMATICA
balQ[n_] := Module[{d = IntegerDigits[n, 2], m}, EvenQ @ (m = Length @ d) && Count[d, 1] == m/2]; Select[Range[60000], balQ[#] && balQ[#^2] && balQ[#^3] &] (* Amiram Eldar, Apr 26 2022 *)
PROG
(Python)
from itertools import count, islice
from sympy.utilities.iterables import multiset_permutations
def isbalanced(n): b = bin(n)[2:]; return b.count("0") == b.count("1")
def A031443gen(): yield from (int("1"+"".join(p), 2) for n in count(1) for p in multiset_permutations("0"*n+"1"*(n-1)))
def agen():
for k in A031443gen():
if isbalanced(k**2) and isbalanced(k**3):
yield k
print(list(islice(agen(), 40))) # Michael S. Branicky, Apr 26 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Alex Ratushnyak, Apr 26 2022
STATUS
approved