login
A352938
Irregular table T(n, k), n >= 0, k = 1..A080100(n), read by rows: the n-th row contains in ascending order the distinct nonnegative integers k <= n that have no common 1-bit with n.
2
0, 0, 0, 1, 0, 0, 1, 2, 3, 0, 2, 0, 1, 0, 0, 1, 2, 3, 4, 5, 6, 7, 0, 2, 4, 6, 0, 1, 4, 5, 0, 4, 0, 1, 2, 3, 0, 2, 0, 1, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 2, 4, 6, 8, 10, 12, 14, 0, 1, 4, 5, 8, 9, 12, 13, 0, 4, 8, 12, 0, 1, 2, 3, 8, 9, 10, 11
OFFSET
0,8
COMMENTS
See A353293 for the other k's.
FORMULA
T(n, 1) = 0.
T(n, A080100(n)) = A035327(n) for any n > 0.
EXAMPLE
Irregular table T(n, k) begins:
0: [0]
1: [0]
2: [0, 1]
3: [0]
4: [0, 1, 2, 3]
5: [0, 2]
6: [0, 1]
7: [0]
8: [0, 1, 2, 3, 4, 5, 6, 7]
9: [0, 2, 4, 6]
10: [0, 1, 4, 5]
11: [0, 4]
12: [0, 1, 2, 3]
13: [0, 2]
14: [0, 1]
15: [0]
PROG
(PARI) row(n) = select(k -> bitand(n, k)==0, [0..n])
CROSSREFS
Cf. A035327, A080100 (row length), A335587 (row sums), A353293.
Sequence in context: A059066 A059067 A356707 * A065861 A329393 A336207
KEYWORD
nonn,tabf,look,base
AUTHOR
Rémy Sigrist, Apr 09 2022
STATUS
approved