login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351990
Number of minimum edge covers of the complete graph K_n.
0
0, 1, 3, 3, 30, 15, 315, 105, 3780, 945, 51975, 10395, 810810, 135135, 14189175, 2027025, 275675400, 34459425, 5892561675, 654729075, 137493105750, 13749310575, 3478575575475, 316234143225, 94870242967500, 7905853580625, 2774954606799375, 213458046676875, 86663966950811250, 6190283353629375
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Complete Graph
Eric Weisstein's World of Mathematics, Minimum Edge Cover
FORMULA
a(n) = (n - 1)!! for n == 0 (mod 2).
a(n) = 2^((1 - n)/2)*n!/Gamma((n - 1)/2) for n == 1 (mod 2).
a(1) = 0, a(2) = 1, a(n) = (n - 1)*(((n - 2)*(n - 1)*n - 4)*a(n - 2) - 6*a(n - 1))/(n*(11 + (n - 6)*n) - 10).
MATHEMATICA
Table[Piecewise[{{(2^((1 - n)/2) Gamma[n + 1])/Gamma[(n - 1)/2], Mod[n, 2] == 1}, {(n - 1)!!, Mod[n, 2] == 0}}, 0], {n, 20}]
RecurrenceTable[{a[1] == 0, a[2] == 1, a[n] == ((n - 1) (((n - 2) (n - 1) n - 4) a[n - 2] - 6 a[n - 1]))/(n (11 + (n - 6) n) - 10)}, a, {n, 20}]
CROSSREFS
Sequence in context: A139206 A100651 A124244 * A151480 A096351 A367890
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Feb 27 2022
STATUS
approved