login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351918
G.f. A(x) satisfies: [x^n] (1 + n*x - A(x))^(2*n+1) = 0, for n > 0.
1
1, 2, 16, 262, 6688, 231938, 10130888, 532099310, 32582983264, 2275724862530, 178357712565096, 15489332978290006, 1475661504819976992, 152969444613431797250, 17137064243138924753480, 2062951616302994096028894
OFFSET
1,2
COMMENTS
Compare to: [x^n] (1 + n*x - C(x))^(n+1) = 0, for n>0, where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers
Compare to: [x^n] (1 + n*x - W(x))^n = 0, for n>0, where W(x) = Sum_{n>=1} (n-1)^(n-1)*x^n/n! = 1 + x/LambertW(-x).
LINKS
FORMULA
a(n) ~ c * d^n * n! / n^2, where d = (1+r) / ((-1 + exp(r + LambertW(-1, -exp(-r)*r))) * LambertW(-exp(-1-r)*(1+r))) = 8.406107401279769476199925123910168..., r = 0.7545302104650497245839827141610818561001159135034... is the root of the equation r*(1 + r + LambertW(-exp(-1 - r)*(1 + r))) = -(1 + r)*(r + LambertW(-1, -exp(-r)*r)) and c = 0.053954066... - Vaclav Kotesovec, Feb 27 2022
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 16*x^3 + 262*x^4 + 6688*x^5 + 231938*x^6 + 10130888*x^7 + 532099310*x^8 + 32582983264*x^9 + 2275724862530*x^10 + ...
Related table.
Here we illustrate the formula [x^n] (1 + n*x - A(x))^(2*n+1) = 0 (n > 0).
The table of coefficients of x^k in (1 + n*x - A(x))^(2*n+1) begins:
n=0: [1, -1, -2, -16, -262, -6688, -231938, ...];
n=1: [1, 0, -6, -48, -774, -19872, -691910, ...];
n=2: [1, 5, 0, -110, -1645, -38439, -1286640, ...];
n=3: [1, 14, 70, 0, -3374, -74928, -2272326, ...];
n=4: [1, 27, 306, 1692, 0, -144342, -4262946, ...];
n=5: [1, 44, 858, 9504, 58938, 0, -7887286, ...];
n=6: [1, 65, 1924, 33982, 388401, 2694523, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] (1 + n*x - A(x))^(2*n+1) = 0, for n > 0.
PROG
(PARI) {a(n) = my(A=[1], m=1); for(i=1, n, A=concat(A, 0); m=#A;
A[m] = polcoeff( (1 + m*x - x*Ser(A))^(2*m+1), m)/(2*m+1) ); A[n]}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A358145 A246739 A304317 * A326272 A372513 A283685
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 25 2022
STATUS
approved