login
A351879
a(0) = a(1) = 1; a(n) = -Sum_{k=0..n-2} binomial(n-2,k) * a(k) * a(n-k-2).
0
1, 1, -1, -2, 0, 10, 10, -60, -220, 400, 4200, 2200, -90200, -290400, 1892000, 15796000, -24024000, -775676000, -1592492000, 36509880000, 240055640000, -1435950560000, -23703057840000, 7376731120000, 2082346354000000, 9478853472000000, -162472029808000000
OFFSET
0,4
FORMULA
E.g.f. A(x) satisfies: A(x) = 1 + x - Integral( Integral A(x)^2 dx) dx.
MATHEMATICA
a[0] = a[1] = 1; a[n_] := a[n] = -Sum[Binomial[n - 2, k] a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 26}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Feb 23 2022
STATUS
approved