login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351397
Sum of the exponents in the prime factorizations of the prime power divisors of n.
1
0, 1, 1, 3, 1, 2, 1, 6, 3, 2, 1, 4, 1, 2, 2, 10, 1, 4, 1, 4, 2, 2, 1, 7, 3, 2, 6, 4, 1, 3, 1, 15, 2, 2, 2, 6, 1, 2, 2, 7, 1, 3, 1, 4, 4, 2, 1, 11, 3, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 5, 1, 2, 4, 21, 2, 3, 1, 4, 2, 3, 1, 9, 1, 2, 4, 4, 2, 3, 1, 11, 10, 2, 1, 5, 2, 2, 2, 7, 1, 5, 2, 4, 2
OFFSET
1,4
COMMENTS
a(n) is the sum of all the k's in the divisors of n of the form p^k, where p is prime and k>=1.
LINKS
FORMULA
a(n) = Sum_{d|n} Omega(d) * [omega(d) = 1].
Additive with a(p^e) = e*(e+1)/2. - Amiram Eldar, Feb 10 2022
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{k>=2} (k * P(k)) = 2.14822166379843041578..., where P(s) is the prime zeta function. - Amiram Eldar, Oct 05 2023
From Ridouane Oudra, Aug 16 2024: (Start)
a(n) = (A001222(n) + A090885(n))/2 ;
a(n) = Sum_{d|n} A100995(d). (End)
EXAMPLE
a(8) = 6; The prime power divisors of 8 are 2,4,8 with prime factorizations 2^1,2^2,2^3 and the sum of the exponents in their prime factorizations is 1+2+3 = 6.
a(20) = 4; The prime power divisors of 20 are 2,4,5 with prime factorizations 2^1,2^2,5^1 and the sum of the exponents in each of their prime factorizations is 1+2+1 = 5.
MATHEMATICA
f[p_, e_] := e*(e + 1)/2; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 10 2022 *)
PROG
(PARI) a(n) = sumdiv(n, d, my(x); if (x=isprimepower(d), x)); \\ Michel Marcus, Feb 10 2022
CROSSREFS
Cf. A001221 (omega), A001222 (Omega), A077761, A246655.
Sequence in context: A010123 A039620 A008296 * A140185 A229341 A372245
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Feb 09 2022
STATUS
approved