login
A350899
Number of partitions of n such that (smallest part) = 5*(number of parts).
4
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 20, 21, 22, 24, 25, 27, 29, 31, 33, 36, 38, 41, 44, 47
OFFSET
1,45
FORMULA
G.f.: Sum_{k>=1} x^(5*k^2)/Product_{j=1..k-1} (1-x^j).
a(n) ~ (1 - alfa) * exp(2*sqrt(n*(5*log(alfa)^2 + polylog(2, 1 - alfa)))) * (5*log(alfa)^2 + polylog(2, 1 - alfa))^(1/4) / (2*sqrt(Pi) * sqrt(10 - 9*alfa) * n^(3/4)), where alfa = 0.8350790427235590476091499923248865165628469558282... is positive real root of the equation alfa^10 + alfa - 1 = 0. - Vaclav Kotesovec, Jan 22 2022
PROG
(PARI) my(N=99, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, sqrtint(N\5), x^(5*k^2)/prod(j=1, k-1, 1-x^j))))
CROSSREFS
Column 5 of A350890.
Cf. A168656.
Sequence in context: A123108 A008619 A110654 * A350898 A373076 A373070
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 21 2022
STATUS
approved