OFFSET
1,27
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
FORMULA
G.f.: Sum_{k>=1} x^(3*k^2)/Product_{j=1..k-1} (1-x^j).
a(n) ~ (1 - alfa) * exp(2*sqrt(n*(3*log(alfa)^2 + polylog(2, 1 - alfa)))) * (3*log(alfa)^2 + polylog(2, 1 - alfa))^(1/4) / (2*sqrt(Pi) * sqrt(6 - 5*alfa) * n^(3/4)), where alfa = 0.7780895986786010978806823096592944458720784440255... is positive real root of the equation alfa^6 + alfa - 1 = 0. - Vaclav Kotesovec, Jan 22 2022
PROG
(PARI) my(N=99, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, sqrtint(N\3), x^(3*k^2)/prod(j=1, k-1, 1-x^j))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 21 2022
STATUS
approved