login
A350844
Number of strict integer partitions of n with no difference -2.
16
1, 1, 1, 2, 1, 3, 3, 4, 4, 7, 7, 8, 11, 12, 15, 18, 21, 23, 31, 32, 40, 45, 54, 59, 73, 78, 94, 106, 122, 136, 161, 177, 203, 231, 259, 293, 334, 372, 417, 476, 525, 592, 663, 742, 821, 931, 1020, 1147, 1271, 1416, 1558, 1752, 1916, 2137, 2357, 2613, 2867
OFFSET
0,4
EXAMPLE
The a(1) = 1 through a(12) = 11 partitions (A..C = 10..12):
1 2 3 4 5 6 7 8 9 A B C
21 32 51 43 62 54 73 65 84
41 321 52 71 63 82 74 93
61 521 72 91 83 A2
81 541 92 B1
432 721 A1 543
621 4321 632 651
821 732
741
921
6321
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], FreeQ[Differences[#], 0|-2]&]], {n, 0, 30}]
CROSSREFS
The version for no difference 0 is A000009.
The version for no difference > -2 is A001227, non-strict A034296.
The version for no difference -1 is A003114 (A325160).
The version for subsets of prescribed maximum is A005314.
The version for all differences < -2 is A025157, non-strict A116932.
The opposite version is A072670.
The multiplicative version is A350840, non-strict A350837 (A350838).
The non-strict version is A350842.
A000041 counts integer partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length (A026424).
A116931 counts partitions with no difference -1 (A319630).
A323092 counts double-free integer partitions (A320340) strict A120641.
A325534 counts separable partitions (A335433).
A325535 counts inseparable partitions (A335448).
Sequence in context: A027157 A112194 A238788 * A083041 A318611 A366472
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 21 2022
STATUS
approved