login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350524
G.f. A(x) satisfies: [x^(2*n-2)] A(x)^(n^2) = 0 and [x^(2*n-1)] A(x)^(n^2) = 0 for n > 1, with a(0) = 1, a(2) = 2.
1
1, 2, -6, 28, -144, 736, -3512, 14896, -61600, 509632, -12903296, 422568704, -17796848640, 824388274176, -43343785743488, 2375499099860224, -140774447935008256, 8727751762659943424, -578377033389467758592, 40230774454685666598912, -2967831511563656631672832, 229648123356288830870929408
OFFSET
0,2
EXAMPLE
G.f.: A(x) = 1 + 2*x - 6*x^2 + 28*x^3 - 144*x^4 + 736*x^5 - 3512*x^6 + 14896*x^7 - 61600*x^8 + 509632*x^9 - 12903296*x^10 + ...
The table of coefficients of x^k in A(x)^(n^2), for k>=0, begins:
n=1: [1, 2, -6, 28, -144, 736, -3512, 14896, -61600, 509632, ...];
n=2: [1, 8, 0, 0, 40, -512, 4608, -32768, 152272, 456064, ...];
n=3: [1, 18, 90, 60, 0, 0, -1176, 20592, -278208, 3442304, ...];
n=4: [1, 32, 384, 2048, 4256, 1792, 0, 0, -36672, 621568, ...];
n=5: [1, 50, 1050, 11900, 77600, 285760, 537000, 399600, 0, 0, ...];
n=6: [1, 72, 2304, 43008, 516456, 4147200, 22411776, 79921152, 178965072, 227782016, 0, 0, ...]; ...
in which both coefficients of x^(2*n-2) and x^(2*n-1) in A(x)^(n^2) equal zero for n > 1.
PROG
(PARI) {a(n) = my(A=[1, 2], P); for(i=1, n, A=concat(A, 0); P = (#A+1)\2;
A[#A] = -polcoeff( Ser(A)^(P^2)/(P^2), #A-1) ); H=A; A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A227294 A302336 A225877 * A228842 A218941 A303829
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 03 2022
STATUS
approved