Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Apr 16 2024 07:08:23
%S 16,34,52,70,88,106,124,142,160,178,196,214,232,250,268,286,304,322,
%T 340,358,376,394,412,430,448,466,484,502,520,538,556,574,592,610,628,
%U 646,664,682,700,718,736,754,772,790,808,826,844,862,880,898,916,934,952,970
%N a(n) = 18*n + 16.
%C Sixth column of A006370 (the Collatz or 3x+1 map) when it is interpreted as a rectangular array with six columns read by rows.
%H Leo Tavares, <a href="/A350522/a350522.jpg">Illustration: Triple Hexagonal Rings</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F a(n) = A239129(n+1) - 1.
%F From _Stefano Spezia_, Jan 04 2022: (Start)
%F O.g.f.: 2*(8 + x)/(1 - x)^2.
%F E.g.f.: 2*exp(x)*(8 + 9*x).
%F a(n) = 2*a(n-1) - a(n-2) for n > 1. (End)
%F a(n) = 3*A008588(n+1) - 2. - _Leo Tavares_, Sep 14 2022
%F From _Elmo R. Oliveira_, Apr 12 2024: (Start)
%F a(n) = 2*A017257(n) = A006370(A016969(n)).
%F a(n) = 2*(A062728(n+1) - A062728(n)). (End)
%p seq(18*n+16, n=0..53);
%t Table[18n+16, {n, 0, 53}]
%o (PARI) a(n)=18*n+16
%o (Magma) [18*n+16: n in [0..53]];
%o (Maxima) makelist(18*n+16, n, 0, 53);
%o (GAP) List([0..53], n-> 18*n+16)
%o (Python) [18*n+16 for n in range(53)]
%Y Bisection of A017245.
%Y Cf. A006370, A008588, A008600, A016969, A017257, A062728, A239129.
%K nonn,easy
%O 0,1
%A _Omar E. Pol_, Jan 03 2022