login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the least prime p such that p^2+n = q*(n+1) for some prime q.
2

%I #21 Jan 04 2022 04:09:08

%S 3,2,3,19,5,41,3,19,11,67,5,131,13,41,17,101,17,37,11,29,109,47,5,101,

%T 53,1619,13,173,11,311,31,23,103,181,19,149,37,53,41,491,13,947,23,71,

%U 137,659,7,97,151,67,131,953,53,131,41,151,59,353,11,487,61,127,191,79,43,4021,67,139,29

%N a(n) is the least prime p such that p^2+n = q*(n+1) for some prime q.

%C a(n) >= sqrt(n+2), with equality if and only if n+2 is the square of a prime.

%H Robert Israel, <a href="/A350517/b350517.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n)^2+n = (n+1)*A350518(n).

%e a(4) = 19 because 19 is prime and 19^2+4 = 365 = 73*(4+1) where 73 is prime, and no smaller prime than 19 works.

%p g:= proc(n) local p,M,a,m,q;

%p M:= sort(map(t -> rhs(op(t)), [msolve(p^2=1, n+1)]));

%p for a from 0 do

%p for m in M do

%p p:= a*(n+1)+m;

%p if not isprime(p) then next fi;

%p q:= (p^2+n)/(n+1);

%p if isprime(q) then return p fi

%p od od:

%p end proc:

%p map(g, [$1..100]);

%t a[n_] := Module[{p = NextPrime[Floor[Sqrt[n + 2]] - 1], q}, While[! IntegerQ [(q = (p^2 + n)/(n + 1))] || ! PrimeQ[q], p = NextPrime[p]]; p]; Array[a, 70] (* _Amiram Eldar_, Jan 03 2022 *)

%o (PARI) isp(r) = (denominator(r)==1) && isprime(r);

%o a(n) = my(p=2); while (!isp((p^2+n)/(n+1)), p = nextprime(p+1)); p; \\ _Michel Marcus_, Jan 03 2022

%o (Python)

%o from sympy import isprime, nextprime

%o def A350517(n):

%o p = 2

%o while True:

%o a, b = divmod(p**2+n,n+1)

%o if not b and isprime(a):

%o return p

%o p = nextprime(p) # _Chai Wah Wu_, Jan 04 2022

%Y Cf. A350518.

%K nonn

%O 1,1

%A _J. M. Bergot_ and _Robert Israel_, Jan 02 2022