Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #45 Jun 02 2022 08:59:23
%S 1,1,1,1,1,1,1,1,1,1,2,2,2,3,4,6,8,12,17,30,41,70,107,186,307,531,887,
%T 1561,2701,4817,8514,15030,26490,47200,84622,151809,273912,496807,
%U 900595,1643185,2999837,5498916,10111429,18596096,34306158,63585519,118215700
%N Maximal coefficient of Product_{j=1..n} (1 - x^prime(j)).
%H Alois P. Heinz, <a href="/A350514/b350514.txt">Table of n, a(n) for n = 0..500</a>
%p b:= proc(n) option remember; `if`(n=0, 1,
%p expand((1-x^ithprime(n))*b(n-1)))
%p end:
%p a:= n-> max(coeffs(b(n))):
%p seq(a(n), n=0..60);
%t a[n_] := Times@@(1-x^Prime[Range[n]])//Expand//CoefficientList[#, x]&//Max;
%t Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, Jun 02 2022 *)
%o (Python)
%o from sympy.abc import x
%o from sympy import prime, prod
%o def A350514(n): return 1 if n == 0 else max(prod(1-x**prime(i) for i in range(1,n+1)).as_poly().coeffs()) # _Chai Wah Wu_, Jan 04 2022
%o (PARI) a(n) = vecmax(Vec(prod(j=1, n, 1-'x^prime(j)))); \\ _Michel Marcus_, Jan 04 2022
%Y Cf. A000040, A007504, A046675, A086376, A350457.
%K nonn
%O 0,11
%A _Alois P. Heinz_, Jan 02 2022