login
A350498
Convolution of triangular numbers with every third number of Narayana's Cows sequence.
0
0, 1, 7, 31, 114, 385, 1250, 3987, 12619, 39810, 125425, 394955, 1243433, 3914383, 12322293, 38789576, 122105944, 384377494, 1209981891, 3808901216, 11990036895, 37743426054, 118812495000, 374009739009, 1177344897390, 3706162867858, 11666626518622, 36725362368682, 115607732787126, 363921470561515
OFFSET
1,3
COMMENTS
This is the convolution of N(3*n-1) with t(n); in other words, a(n) = Sum_{i=1..n} N(3*i-1)*t(n-i) where N(k)=A000930(k) is the k-th number in Narayana's Cows sequence and t(k)=A000217(k) is the k-th triangular number.
REFERENCES
G. Dresden and M. Tulskikh, "Convolutions of Sequences with Single-Term Signature Differences", preprint.
FORMULA
a(n) = N(3*n-1) - A000217(n) where N(k)=A000930(k).
G.f.: x^2/((1 - x)^3 * (1 - 4*x + 3*x^2 - x^3)).
a(n) = A052529(n)-A000217(n), n>0. - R. J. Mathar, Aug 17 2022
EXAMPLE
For n=4, a(4) = N(2)*t(3) + N(5)*t(2) + N(8)*t(1) + N(11)*t(0) = 1*6 + 4*3 + 13*1 + 41*0 = 31, where N(k)=A000930(k) and t(k)=A000217(k).
MATHEMATICA
CoefficientList[
Series[x/((-1 + x)^3 (-1 + 4 x - 3 x^2 + x^3)), {x, 0, 30}], x]
CROSSREFS
Sequence in context: A055580 A364635 A097786 * A197649 A006458 A091344
KEYWORD
nonn,easy
AUTHOR
Greg Dresden, Jan 04 2022
STATUS
approved