login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350462
Table read by rows, T(n, k) = Y(2*n, k, Z(2*n - k)) where Y are the partial Bell polynomials and Z(m) is the list [A126869(j), j = 1..2*(m+1)].
2
1, 0, 2, 0, 6, 12, 0, 20, 180, 120, 0, 70, 2380, 5040, 1680, 0, 252, 31500, 163800, 151200, 30240, 0, 924, 425964, 4989600, 9702000, 4989600, 665280, 0, 3432, 5885880, 150174024, 554954400, 554954400, 181621440, 17297280
OFFSET
0,3
EXAMPLE
[0] 1;
[1] 0, 2;
[2] 0, 6, 12;
[3] 0, 20, 180, 120;
[4] 0, 70, 2380, 5040, 1680;
[5] 0, 252, 31500, 163800, 151200, 30240;
[6] 0, 924, 425964, 4989600, 9702000, 4989600, 665280;
[7] 0, 3432, 5885880, 150174024, 554954400, 554954400, 181621440, 17297280;
MATHEMATICA
Z[n_] := Flatten[Table[{0, Binomial[2 j, j]}, {j, 1, n}]];
T[n_, k_] := BellY[2 n, k, Z[2 n - k]];
Table[T[n, k], {n, 0, 6}, {k, 0, n}] // TableForm
CROSSREFS
Cf. A350291 (row sums), A000984 (column 1), A001813 (main diagonal).
Cf. A350463.
Sequence in context: A078048 A362186 A335061 * A357367 A110667 A347929
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 12 2022
STATUS
approved