login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350457
Maximal coefficient of (1 + x^2) * (1 + x^3) * (1 + x^5) * ... * (1 + x^prime(n)).
8
1, 1, 1, 2, 2, 2, 4, 4, 7, 10, 16, 27, 45, 79, 139, 249, 439, 784, 1419, 2574, 4703, 8682, 16021, 29720, 55146, 102170, 190274, 356804, 671224, 1269022, 2404289, 4521836, 8535117, 16134474, 30635869, 58062404, 110496946, 210500898, 401422210, 767158570, 1467402238
OFFSET
0,4
LINKS
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
expand((1+x^ithprime(n))*b(n-1)))
end:
a:= n-> max(coeffs(b(n))):
seq(a(n), n=0..40); # Alois P. Heinz, Jan 01 2022
MATHEMATICA
b[n_] := b[n] = If[n == 0, 1, Expand[(1 + x^Prime[n])*b[n - 1]]];
a[n_] := Max[CoefficientList[b[n], x]];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 26 2022, after Alois P. Heinz *)
PROG
(PARI) a(n) = vecmax(Vec(prod(k=1, n, 1 + x^prime(k)))); \\ Michel Marcus, Jan 01 2022
(Python)
from sympy.abc import x
from sympy import prime, prod
def A350457(n): return 1 if n == 0 else max(prod(1+x**prime(i) for i in range(1, n+1)).as_poly().coeffs()) # Chai Wah Wu, Jan 03 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 01 2022
STATUS
approved