login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349935
Array read by ascending antidiagonals: A(n, k) is the n-th spin s-Catalan number, with s = k/2.
1
1, 0, 1, 2, 1, 1, 0, 3, 0, 1, 5, 6, 4, 1, 1, 0, 15, 0, 5, 0, 1, 14, 36, 34, 16, 6, 1, 1, 0, 91, 0, 65, 0, 7, 0, 1, 42, 232, 364, 260, 111, 31, 8, 1, 1, 0, 603, 0, 1085, 0, 175, 0, 9, 0, 1, 132, 1585, 4269, 4600, 2666, 981, 260, 51, 10, 1, 1, 0, 4213, 0, 19845, 0, 5719, 0, 369, 0, 11, 0, 1
OFFSET
1,4
LINKS
William Linz, s-Catalan numbers and Littlewood-Richardson polynomials, arXiv:2110.12095 [math.CO], 2021. See p. 3.
FORMULA
A(n, k) = T(n, k*(n+1)/2, k) - T(n, k*(n+1)/2+1, k), where T(n, k, s) is the s-binomial coefficient defined as the coefficient of x^k in (Sum_{i=0..s} x^i)^n.
A(n, 1) = A126120(n+1).
A(n, 2) = A005043(n+1).
A(3, n) = A000027(n+1).
A(4, 2*n) = A005891(n).
A(5, n) = A006003(n+1).
EXAMPLE
The array begins:
n\k | 1 2 3 4 5 6
----+---------------------------
1 | 1 1 1 1 1 1 ...
2 | 0 1 0 1 0 1 ...
3 | 2 3 4 5 6 7 ...
4 | 0 6 0 16 0 31 ...
5 | 5 15 34 65 111 175 ...
6 | 0 36 0 260 0 981 ...
...
MATHEMATICA
T[n_, k_, s_]:=If[k==0, 1, Coefficient[(Sum[x^i, {i, 0, s}])^n, x^k]]; A[n_, k_]:=T[n, k(n+1)/2, k]-T[n, k(n+1)/2+1, k]; Flatten[Table[A[n-k+1, k], {n, 12}, {k, n}]]
CROSSREFS
Cf. A000012 (1st row), A059841 (2nd row).
Cf. A349934.
Sequence in context: A322435 A113949 A318808 * A257991 A373592 A343029
KEYWORD
nonn,easy,tabl
AUTHOR
Stefano Spezia, Dec 06 2021
STATUS
approved