login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349802
Triangle read by rows: T(n,k) is the number of binary Lyndon words of length n that begin with exactly k 0's. 0 <= k <= n.
3
1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 2, 2, 1, 1, 0, 0, 2, 3, 2, 1, 1, 0, 0, 4, 6, 4, 2, 1, 1, 0, 0, 5, 10, 7, 4, 2, 1, 1, 0, 0, 8, 18, 14, 8, 4, 2, 1, 1, 0, 0, 11, 31, 26, 15, 8, 4, 2, 1, 1, 0, 0, 18, 56, 50, 30, 16, 8, 4, 2, 1, 1, 0
OFFSET
0,17
COMMENTS
Rows sum to A001037.
Conjecture: The Euler transform of column k=1 gives the Fibonacci numbers, the Euler transform of column k=2 gives the tribonacci numbers (A000073), and more generally, the Euler transform of column k >= 1 gives the (k+1)-bonacci numbers (A048887).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows n=0..50)
FORMULA
T(n,n) = 0 for n >= 2.
T(n,n-1) = 1 for n >= 1.
T(n,n-m) = 2^(m-2) for n >= 2*m - 1 and m >= 2.
EXAMPLE
For n = 6, the values correspond to the following Lyndon words:
T(6,1) = 2 via 010111 and 011111;
T(6,2) = 3 via 001011, 001101, and 001111;
T(6,3) = 2 via 000101 and 000111;
T(6,4) = 1 via 000011; and
T(6,5) = 1 via 000001.
Table begins:
n\k | 0 1 2 3 4 5 6 7 8 9
----+------------------------------------
0 | 1
1 | 1, 1
2 | 0, 1, 0
3 | 0, 1, 1, 0
4 | 0, 1, 1, 1, 0
5 | 0, 2, 2, 1, 1, 0
6 | 0, 2, 3, 2, 1, 1, 0
7 | 0, 4, 6, 4, 2, 1, 1, 0
8 | 0, 5, 10, 7, 4, 2, 1, 1, 0
9 | 0, 8, 18, 14, 8, 4, 2, 1, 1, 0
...
PROG
(PARI)
B(k, n)=my(g=1/(1 - x*(1-x^k)/(1-x))); Vec(1 + sum(j=1, n, moebius(j)/j * log(subst(g + O(x*x^(n\j)), x, x^j))))
A(n, m)={my(M=Mat(vector(m, k, Col(B(k, n) - B(k-1, n))))); M[1, 1]=M[2, 2]=1; M}
{ my(M=A(10, 10)); for(n=1, #M, print(M[n, 1..n])) } \\ Andrew Howroyd, Dec 05 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Nov 30 2021
STATUS
approved