login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349640
a(n) = Sum_{k=0..n} binomial(n,k) * A000108(k) * k!.
1
1, 2, 7, 46, 485, 7066, 130987, 2946182, 77923561, 2369742130, 81467904431, 3124302688222, 132237820201357, 6123150708289226, 307903794151741075, 16709463201832993846, 973385368533058021457, 60583668821975488285282, 4012342371757905842648791, 281735471040327667890013070
OFFSET
0,2
FORMULA
a(n) ~ 2^(2*n + 1/2) * n^(n-1) / exp(n - 1/4).
From Peter Luschny, Nov 23 2021: (Start)
a(n) = n! * [x^n](exp(x)*(1 - sqrt(1 - 4*x))/(2*x)).
a(n) = (4*(n-1)*(n-2)*a(n - 3) - (n-1)*(8*n-5)*a(n - 2) + 4*n^2*a(n - 1))/(n + 1) for n >= 4.
a(n-1) = A224500(n) / n for n >= 1. (End)
MAPLE
gf := exp(x)*(1 - sqrt(1 - 4*x))/(2*x): ser := series(gf, x, 24):
seq(n!*coeff(ser, x, n), n = 0..19);
# Alternative:
a := n -> `if`(n < 4, [1, 2, 7, 46][n + 1], ((4*n^2 - 12*n + 8)*a(n - 3) - (8*n^2 - 13*n + 5)*a(n - 2) + 4*n^2*a(n - 1))/(n + 1)):
seq(a(n), n = 0..19); # Peter Luschny, Nov 23 2021
MATHEMATICA
Table[Sum[Binomial[n, j]*CatalanNumber[j]*j!, {j, 0, n}], {n, 0, 20}]
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k) * (binomial(2*k, k)/(k+1)) * k!); \\ Michel Marcus, Nov 23 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 23 2021
STATUS
approved