login
A349456
Number of singular positroid varieties corresponding to derangements in S_n.
3
0, 0, 0, 0, 4, 30, 225, 1736, 14476, 132396
OFFSET
0,5
COMMENTS
a(n) is also the number of derangements whose chordal diagrams have crossed alignments.
a(n) counts the complement of A349413 in the set of all derangements of S_n (A000166).
LINKS
Sara C. Billey and Jordan E. Weaver, Criteria for smoothness of Positroid varieties via pattern avoidance, Johnson graphs, and spirographs, arXiv:2207.06508 [math.CO], 2022.
S. Corteel, Crossings and alignments of permutations, arXiv:math/0601469 [math.CO], 2006.
A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710-1752.
A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO], 2006.
FORMULA
a(n) = A000166(n) - A349413(n).
EXAMPLE
For n=4 the a(4)=4 derangements in one-line notation corresponding to singular positroid varieties are 2413, 3421, 3142, and 4312.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jordan Weaver, Nov 16 2021
STATUS
approved