OFFSET
1,1
COMMENTS
The spiral starts at the triangle's apex (the vertex opposite to the base) and converges to the pole (the accumulation point).
REFERENCES
H. E. Huntley, The Divine Proportion: A Study in Mathematical Beauty, New York: Dover Publications Inc., 1970, pp. 170-176.
Mario Livio, The Golden Ratio: The Story of Phi, The World's Most Astonishing Number, New York: Broadway Books, 2002, p. 119.
LINKS
Amiram Eldar, Golden triangle and logarithmic spiral - illustration.
Hiroaki Kimpara, Logarithmic Spirals based on the Golden Ratio, Golden Square Ratio, Silver Ratio, and Silver Square Ratio, 2011.
Eric Weisstein's World of Mathematics, Golden Triangle.
Eric Weisstein's World of Mathematics, Logarithmic Spiral.
Wikipedia, Golden triangle (mathematics).
Wikipedia, Logarithmic spiral.
FORMULA
Equals sqrt((17 + 7*sqrt(5))/22) * sqrt(1 + b^2)/b, where b = 5*log(phi)/(3*Pi), and phi = (1+sqrt(5))/2 is the golden ratio (A001622).
EXAMPLE
4.92517543947805883719317604681356567422457019284069...
MATHEMATICA
b = 5 * Log[GoldenRatio]/(3*Pi); RealDigits[Sqrt[(17 + 7*Sqrt[5])/22] * Sqrt[1 + b^2]/b, 10, 100][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Nov 12 2021
STATUS
approved