login
A349082
The number of two-term Egyptian fractions of rational numbers, x/y, 0 < x/y < 1, ordered as below. The sequence is the number of (p,q) pairs such that x/y = 1/p + 1/q where p and q are integers with p < q.
9
1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 4, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 3, 2, 2, 1, 1, 1, 0, 2, 2, 1, 1, 1, 1, 0, 0, 4, 1, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 7, 4, 2, 1, 2, 1, 2, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 1, 3, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 4, 4, 1, 3, 1, 1, 0, 2, 1, 1, 0, 0, 0, 0, 4, 3, 2, 2, 1, 2, 0, 1, 1, 1, 0, 1, 0, 0, 0
OFFSET
1,4
COMMENTS
The sequence are the terms in a triangle, where the rows correspond to the denominator of the rational number (starting with row 2, column 1) and the columns correspond to the numerators:
x=1 2 3 4 5 rationals x/y:
Row 1 (y=2): 1 1/2
Row 2 (y=3): 1, 1 1/3, 2/3
Row 3 (y=4): 2, 1, 1 1/4, 2/4, 3/4
Row 4 (y=5): 1, 1, 1, 0 1/5, 2/5, 3/5, 4/5
Row 5 (y=6): 4, 1, 1, 1, 1 1/6, 2/6, 3/6, 4/6, 5/6
Alternatively, order the rational numbers, x/y, 0 < x/y < 1, in this order: 1/2, 1/3, 2/3, 1/4, 2/4, 3/4, 1/5, 2/5, ... For example, in this ordering, the sixth rational number is 3/4. The numerators of the n-th rational number are A002260(n) and the denominators are A003057(n).
A018892 is a subsequence (for x/y = 1/n).
LINKS
EXAMPLE
The fourth rational number is 1/4, 1/4 = 1/5 + 1/20 = 1/6 + 1/12, so a(4)=2.
CROSSREFS
Columns: A018892 (x=1), A046079 (x=2).
Sequence in context: A000164 A330261 A157746 * A281010 A316864 A037820
KEYWORD
nonn,tabl
AUTHOR
Jud McCranie, Nov 07 2021
STATUS
approved