login
A349042
Triangle read by rows in which row n >= 1 lists the count of 0's, ..., k's in all previous terms in the triangle. T(0,0) = 0, k is from [0..A049820(n)].
1
0, 1, 1, 1, 3, 1, 4, 1, 5, 0, 1, 2, 6, 1, 2, 7, 2, 1, 1, 1, 2, 10, 4, 1, 2, 2, 11, 6, 1, 2, 1, 2, 2, 13, 9, 1, 2, 1, 2, 2, 15, 12, 1, 2, 1, 2, 1, 0, 1, 3, 19, 14, 2, 2, 1, 2, 3, 20, 17, 3, 2, 1, 2, 1, 0, 1, 1, 1, 4, 25, 19, 4, 4, 1, 2, 1, 0, 1, 1, 5, 29, 20, 4, 6, 2, 3, 1, 0, 1, 1, 1
OFFSET
0,5
COMMENTS
For n >= 1 the n-th row length equals A049820(n) + 1. The same definition, but for k from [0..n] gives A032531.
LINKS
Michael De Vlieger, Scatterplot of a(n) for n=0..31686, i.e., rows 0..256.
Michael De Vlieger, Scatterplot of a(n)for n=0..518562, i.e., rows 0..1024
EXAMPLE
Triangle begins:
k=0 1 2 3 4 5
n=0: 0;
n=1: 1;
n=2: 1;
n=3: 1, 3;
n=4: 1, 4;
n=5: 1, 5, 0, 1;
n=6: 2, 6, 1;
n=7: 2, 7, 2, 1, 1, 1;
MATHEMATICA
c[_] = 0; Reap[Do[w = {}; Array[(Set[m, c[#]]; c[m]++; AppendTo[w, m]) &, If[n == 0, 1, n - DivisorSigma[0, n] + 1], 0]; Sow[w], {n, 0, 15}]][[-1, -1]] // Flatten (* Michael De Vlieger, Nov 09 2021 *)
PROG
(Python)
from collections import Counter
from sympy import divisor_count
def auptor(rows):
alst, inventory = [0], Counter([0])
for m in range(1, rows):
for k in range(m-divisor_count(m)+1):
c = inventory[k]; alst.append(c); inventory.update([c])
return alst
print(auptor(16)) # Michael S. Branicky, Nov 07 2021
CROSSREFS
Sequence in context: A029212 A035687 A324542 * A375820 A302792 A179820
KEYWORD
nonn,tabf
AUTHOR
Ctibor O. Zizka, Nov 06 2021
STATUS
approved