login
A349036
G.f. A(x) satisfies: A(x) = 1 / (1 - x - x^2 * A(-3*x)).
2
1, 1, 2, 0, 17, 29, 1459, -4233, 1056763, 11355763, 6957281732, -209598234798, 410408244241271, 37950250148465939, 218184080600974976674, -60068553848055713514168, 1043447774597599997266176403, 864004926526955255880635472763, 44918734284964096829849186288888390
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-2} (-3)^k * a(k) * a(n-k-2).
MATHEMATICA
nmax = 18; A[_] = 0; Do[A[x_] = 1/(1 - x - x^2 A[-3 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[(-3)^k a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 18}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Nov 06 2021
STATUS
approved