login
A348993
a(n) = A064989(sigma(n) / gcd(sigma(n), A003961(n))), where A003961 shifts the prime factorization of n one step towards larger primes, while A064989 shifts it back towards smaller primes, and sigma is the sum of divisors function.
7
1, 1, 1, 5, 2, 1, 1, 3, 11, 2, 2, 5, 5, 1, 2, 29, 4, 11, 3, 1, 1, 2, 2, 1, 29, 5, 1, 5, 6, 2, 1, 5, 2, 4, 2, 55, 17, 3, 5, 3, 10, 1, 7, 5, 22, 2, 2, 29, 34, 29, 4, 25, 8, 1, 4, 3, 1, 6, 6, 1, 29, 1, 11, 113, 2, 2, 13, 5, 2, 2, 4, 11, 31, 17, 29, 15, 2, 5, 3, 29, 49, 10, 10, 5, 8, 7, 2, 3, 12, 22, 5, 5, 1, 2, 6, 5
OFFSET
1,4
FORMULA
a(n) = A064989(A349162(n)) = A064989(A348992(n)).
MATHEMATICA
Array[Times @@ Map[If[#1 <= 2, 1, NextPrime[#1, -1]]^#2 & @@ # &, FactorInteger[#1/GCD[##]]] & @@ {DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &, 96] (* Michael De Vlieger, Nov 11 2021 *)
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A349162(n) = { my(s=sigma(n)); (s/gcd(s, A003961(n))); };
CROSSREFS
Cf. A000203, A000265, A003961, A064989, A161942, A342671, A348992, A349162, A349169 (gives odd k for which a(k) = A319627(k)).
Sequence in context: A104714 A085119 A010128 * A180133 A197419 A029764
KEYWORD
nonn,look
AUTHOR
Antti Karttunen, Nov 10 2021
STATUS
approved