login
A348562
Decimal expansion of a limit related to the sum of reciprocals of the imaginary part of the nontrivial zeros of the Riemann zeta function (negated).
0
1, 7, 1, 5, 9, 4, 0, 4, 3, 0, 7, 0, 9, 8, 1, 4, 9, 4, 5, 4, 1, 9, 1, 6, 1, 4, 2, 7, 3, 9, 6, 4, 2, 9, 2, 6, 1, 5, 3, 6, 0, 1, 1, 1, 7, 4, 8, 1, 8, 3, 5, 9, 1, 2, 1, 5, 1, 5, 9, 1, 2, 5, 1, 3, 7, 0, 6, 7, 8, 2, 4, 4, 5, 8, 1, 5, 1, 4, 0, 6, 7, 7, 9, 8, 1, 9, 1, 7, 5, 7, 2, 8, 1, 5, 9, 8, 5, 3, 4, 3, 3, 3, 7, 8, 4, 4
OFFSET
-1,2
LINKS
Richard P. Brent, David J. Platt, and Timothy S. Trudgian, A harmonic sum over nontrivial zeros of the Riemann zeta-function, Bulletin of the Australian Mathematical Society, Vol. 104, No. 1 (2021), pp. 59-65; arXiv preprint, arXiv:2009.05251 [math.NT], 2020.
Artur Kawalec, On the series expansion of the secondary zeta function, arXiv:2403.15741 [math.NT], 2024; formula (70).
Eric Weisstein's World of Mathematics, Riemann Zeta Function Zeros.
FORMULA
Equals -lim_{T->oo} (Sum_{0 < gamma <= T} 1/gamma) - log(T/(2*Pi))^2/(4*Pi), where gamma denotes the imaginary part of the nontrivial zeros of the Riemann zeta function where multiple zeros (if they exist) are weighted according to their multiplicity.
EXAMPLE
-0.0171594043070981...
CROSSREFS
Sequence in context: A376841 A195369 A367710 * A047875 A346610 A064467
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Oct 22 2021
EXTENSIONS
More terms from Artur Jasinski, Apr 06 2024
STATUS
approved