Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Oct 06 2021 12:19:09
%S 1,1,3,1,7,24,1,12,31,117,469,1,19,111,458,1435,6356,28753,1,29,361,
%T 964,1579,15266,55470,71660,264300,1267174,6105030,1,41,1068,8042,
%U 4886,145628,494779,1952843,705790,9589197,38323695,47157299,188963325,932529235
%N Irregular triangle read by rows: T(n, k) is the number of chains of subspaces 0 < V_1 < ... < V_r = (F_4)^n, counted up to coordinate permutation, with dimension increments given by (any fixed permutation of) the parts of the k-th partition of n in Abramowitz-Stegun order.
%C A permutation on the list of dimension increments does not modify the number of subspace chains.
%C The length of the enumerated chains is r = len(L), where L is the parameter partition.
%H Álvar Ibeas, <a href="/A348115/a348115.txt">First 16 rows, with gaps</a>
%H Álvar Ibeas, <a href="/A348115/a348115_1.txt">Pseudo-column T(n, L), where L = (n-2, 1, 1), up to n=100</a>
%H Álvar Ibeas, <a href="/A348115/a348115_2.txt">Pseudo-column T(n, L), where L = (n-3, 2, 1), up to n=100</a>
%H Álvar Ibeas, <a href="/A348115/a348115_3.txt">Pseudo-column T(n, L), where L = (n-3, 1, 1, 1), up to n=100</a>
%H Álvar Ibeas, <a href="/A348115/a348115_4.txt">Pseudo-column T(n, L), where L = (n-4, 3, 1), up to n=100</a>
%H Álvar Ibeas, <a href="/A348115/a348115_5.txt">Pseudo-column T(n, L), where L = (n-4, 2, 2), up to n=100</a>
%H Álvar Ibeas, <a href="/A348115/a348115_6.txt">Pseudo-column T(n, L), where L = (n-4, 2, 1, 1), up to n=100</a>
%H Álvar Ibeas, <a href="/A348115/a348115_7.txt">Pseudo-column T(n, L), where L = (n-4, 1, 1, 1, 1), up to n=100</a>
%F If the k-th partition of n in A-St is L = (a, n-a), then T(n, k) = A347971(n, a) = A347971(n, n-a).
%e For L = (1, 1, 1), there are 105 (= 21 * 5) = A347487(3, 3) subspace chains 0 < V_1 < V_2 < (F_4)^3.
%e The permutations of the three coordinates classify them into 24 = T(3, 3) orbits.
%e T(3, 2) = 7 refers to partition (2, 1) and counts subspace chains in (F_4)^2 with dimensions (0, 2, 3), i.e., 2-dimensional subspaces. It also counts chains with dimensions (0, 1, 3), i.e., 1-dimensional subspaces.
%e Triangle begins:
%e k: 1 2 3 4 5 6 7
%e ----------------------------
%e n=1: 1
%e n=2: 1 3
%e n=3: 1 7 24
%e n=4: 1 12 31 117 469
%e n=5: 1 19 111 458 1435 6356 28753
%Y Cf. A347971, A347487.
%K nonn,tabf
%O 1,3
%A _Álvar Ibeas_, Oct 01 2021