login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347907
Numbers k such that 2^(4*k-1) == 1 (mod k).
3
1, 7, 511, 10033, 242959, 1265839, 1838599, 4138729, 4446631, 10561159, 13179319, 19926007, 21224239, 38356159, 65746249, 72161239, 82180303, 87563239, 88323689, 98352799, 124563313, 153394537, 158525689, 219011569, 248520769, 348485359, 498260329, 636381799, 638395369, 685333399, 689463889
OFFSET
1,2
COMMENTS
Odd numbers k such that ord(2,k) divides 4*k-1, where ord(2,k) is the multiplicative order of 2 modulo k.
Numbers k such that 2*k is in A130421.
Terms > 7 must be composite, since for odd primes p we have 2^(4*p-1) == 8 (mod p). If k > 1 is a term, then 4*k-1 must also be composite, since ord(2,k) | (4*k-1) and ord(2,k) <= eulerphi(k) <= k-1 < 4*k-1.
If k > 1 is a term, then (2^(4*k-1) - 1)/k is composite. Proof: since 4*k-1 is composite, write 4*k-1 = u*v, u >= v > 1. Proof: since 4*k-1 is composite, write 4*k-1 = u*v, u >= v > 1, then (2^(4*k-1) - 1)/k = (2^u - 1)*(2^(u*(v-1)) + ... + 2^u + 1)/k. Since k | 2^(4*k-1) - 1, there exist positive integers a,b such that a*b = k and that a | 2^u - 1 and b | 2^(u*(v-1)) + ... + 2^u + 1. Note that (2^u - 1)/a, (2^(u*(v-1)) + ... + 2^u + 1)/b >= (2^u - 1)/k >= (2^sqrt(4*k-1) - 1)/k > 1, so (2^(4*k-1) - 1)/k is the product of two integers > 1, so it is composite.
2^t - 1 is a term if and only if 2^(t+2) == 5 (mod t) (t = 1, 3, 9, 871, 2043, 2119, 8769, ...).
LINKS
Jianing Song, Table of n, a(n) for n = 1..1298 (contains all terms below 5*10^14; based on Max Alekseyev's b-file for A130421)
FORMULA
a(n) = A347908(n)/2.
EXAMPLE
7 is a term since 7 divides 2^27 - 1.
MATHEMATICA
Join[{1}, Parallelize[Select[Range[69*10^7], PowerMod[2, 4#-1, #]==1&]]] (* Harvey P. Dale, Apr 16 2023 *)
PROG
(PARI) isA347907(k) = if(k%2 && (!isprime(k) || k==7), Mod(2, k)^(4*k-1)==1, 0)
CROSSREFS
Cf. A347906 (a similar sequence).
Sequence in context: A203472 A219873 A224469 * A320980 A080975 A003396
KEYWORD
nonn
AUTHOR
Jianing Song, Sep 18 2021
STATUS
approved