login
A347863
Odd terms in A015782.
0
7, 21, 93, 357, 381, 681, 1541, 7181, 24573, 36893, 192061, 388669, 393213, 1505533, 1572861, 10678781, 24736253
OFFSET
1,1
COMMENTS
Odd numbers n such that phi(n)+3 divides sigma(n+3), where phi = A000010 and sigma = A000203.
EXAMPLE
a(3) = 93 is a term because phi(93)+3 = 63 divides sigma(96) = 252 = 4*63.
MAPLE
filter:= proc(n) uses numtheory;
sigma(n+3) mod (3+phi(n)) = 0
end proc:
select(filter, [seq(i, i=1..2*10^6, 2)]);
MATHEMATICA
Select[Range[1, 2*10^6, 2], Divisible[DivisorSigma[1, # + 3], EulerPhi[#] + 3] &] (* Amiram Eldar, Jan 24 2022 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Robert Israel, Jan 24 2022
EXTENSIONS
a(16)-a(17) from Amiram Eldar, Jan 24 2022
STATUS
approved