Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Sep 09 2021 09:37:58
%S 1,2,3,5,6,7,9,11,13,15,17,19,20,23,25,28,29,31,33,37,40,41,42,43,47,
%T 51,53,55,57,59,61,67,69,71,73,75,79,83
%N Least k such that there exists an n-element subset S of {1,2,...,k} with the property that all products i * j are distinct for i <= j.
%C a(n) <= A066720(n) and a(n+1) >= a(n) + 1
%F a(n) = min {k >= 1; A338006(k) = n}. - _Pontus von Brömssen_, Sep 09 2021
%e n | example set
%e -----+-------------------------------------------------------
%e 1 | {1}
%e 2 | {1, 2}
%e 3 | {1, 2, 3}
%e 4 | {1, 2, 3, 5}
%e 5 | {1, 3, 4, 5, 6}
%e 6 | {1, 3, 4, 5, 6, 7}
%e 7 | {1, 2, 5, 6, 7, 8, 9}
%e 8 | {1, 2, 5, 6, 7, 8, 9, 11}
%e 9 | {1, 2, 5, 6, 7, 8, 9, 11, 13}
%e 10 | {1, 2, 5, 7, 8, 9, 11, 12, 13, 15}
%e 11 | {1, 2, 5, 7, 8, 9, 11, 12, 13, 15, 17}
%e 12 | {1, 2, 5, 7, 8, 9, 11, 12, 13, 15, 17, 19}
%e 13 | {1, 5, 6, 7, 9, 11, 13, 14, 15, 16, 17, 19, 20}
%e 14 | {1, 2, 5, 7, 11, 12, 13, 16, 17, 18, 19, 20, 21, 23}
%e For n = 4, the set {1,2,3,4} does not have distinct products because 2*2 = 1*4. However, the set {1,2,3,5} does have distinct products because 1*1, 1*2, 1*3, 1*5, 2*2, 2*3, 2*5, 3*3, 3*5, and 5*5 are all distinct.
%t Table[k=1;While[!Or@@(Length[s=Union[Sort/@Tuples[#,{2}]]]==Length@Union[Times@@@s]&/@Subsets[Range@k,{n}]),k++];k,{n,12}] (* _Giorgos Kalogeropoulos_, Sep 08 2021 *)
%o (Python)
%o from itertools import combinations, combinations_with_replacement
%o def a(n):
%o k = n
%o while True:
%o for Srest in combinations(range(1, k), n-1):
%o S = Srest + (k, )
%o allprods = set()
%o for i, j in combinations_with_replacement(S, 2):
%o if i*j in allprods: break
%o else: allprods.add(i*j)
%o else: return k
%o k += 1
%o print([a(n) for n in range(1, 15)]) # _Michael S. Branicky_, Sep 08 2021
%Y Analogous for sums: A003022 and A227590.
%Y Cf. A066720, A338006, A347499.
%K nonn,more
%O 1,2
%A _Peter Kagey_, Sep 03 2021
%E a(15)-a(20) from _Michael S. Branicky_, Sep 08 2021
%E a(21)-a(38) (based on the terms in A338006) from _Pontus von Brömssen_, Sep 09 2021