login
A347159
Sum of cubes of distinct prime divisors of n that are <= sqrt(n).
1
0, 0, 0, 8, 0, 8, 0, 8, 27, 8, 0, 35, 0, 8, 27, 8, 0, 35, 0, 8, 27, 8, 0, 35, 125, 8, 27, 8, 0, 160, 0, 8, 27, 8, 125, 35, 0, 8, 27, 133, 0, 35, 0, 8, 152, 8, 0, 35, 343, 133, 27, 8, 0, 35, 125, 351, 27, 8, 0, 160, 0, 8, 370, 8, 125, 35, 0, 8, 27, 476, 0, 35, 0, 8, 152
OFFSET
1,4
FORMULA
G.f.: Sum_{k>=1} prime(k)^3 * x^(prime(k)^2) / (1 - x^prime(k)).
MATHEMATICA
Table[DivisorSum[n, #^3 &, # <= Sqrt[n] && PrimeQ[#] &], {n, 1, 75}]
nmax = 75; CoefficientList[Series[Sum[Prime[k]^3 x^(Prime[k]^2)/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 20 2021
STATUS
approved