OFFSET
1,2
COMMENTS
Theorem: If u(n) is a series with positive terms such that u(n) -> 0 when n -> oo and that is divergent, i.e., Sum_{n>=0} u(n) = oo, let S(n) = Sum_{k=0..n} u(k) then, the series of term v(n) = u(n)/S(n)^q is convergent iff q>1.
The simplest application is for u(n) = 1/n, S(n) = H(n) = 1 + 1/2 + ... + 1/n, then the series of term w(n) = 1/(n*H(n)^q) is convergent iff q>1.
This sequence gives this limit when q = 2.
REFERENCES
Xavier Gourdon, Analyse, Les Maths en tête, Exercice 5, page 213, Ellipses, 1994.
J. Lelong-Ferrand and J. M. Arnaudiès, Cours de Mathématiques, Tome 2, Analyse, 4ème édition, Classes préparatoires, 1er cycle universitaire, Exercice 21, p. 599, Dunod Université, 1977.
EXAMPLE
1.84825451761121890381193149396...
MATHEMATICA
RealDigits[N[Sum[1/(n*HarmonicNumber[n]^2), {n, 1, Infinity}], 33], 10, 30][[1]] (* Amiram Eldar, Oct 02 2021 *)
CROSSREFS
KEYWORD
AUTHOR
Bernard Schott, Oct 02 2021
EXTENSIONS
More terms from Amiram Eldar, Oct 02 2021
STATUS
approved